
Macintosh Technical Notes

New Technical Notes

Developer Support

®Macintosh

Modifying the Standard String Comparison
Text M.TE.NewStringComp

Revised by: March 1988
Written by: Mark Davis

Priscilla Oppenheimer November 1987

This technical note describes how to modify the standard string comparison by constructing
an itl2 resource. Developers may want to modify the standard string comparison if
Apple’s comparison doesn’t meet their needs or if Apple has not written a string comparison
routine for the language that concerns them.

General Structure

The itl2 resource contains a number of procedures that are used for accurate comparison
of text by the International Utilities Package. Refer to Inside Macintosh, volume V for
an explanation of the algorithm used. The default itl2 for standard English text, which
does no special processing, has the following form:

; normal Include/Load statements
Include 'hd:mpw:aincludes:ScriptEqu.a'
Print On,NoMDir

String AsIs

;--
; dispatch table at the front of the code.
;--
Intl1 Proc

With IUSortFrame,IUStrData
HookDispatch

dc.w ReturnEQ-HookDispatch ; InitProc = 0
dc.w ReturnEQ-HookDispatch ; FetchHook = 2
dc.w ReturnEQ-HookDispatch ; VernierHook = 4
dc.w ReturnEQ-HookDispatch ; ProjectHook = 6
dc.w ReturnEQ-HookDispatch ; ReservedHook1 = 8
dc.w ReturnEQ-HookDispatch ; ReservedHook2 = 10

Developer Technical Support March 1988

Macintosh Technical Notes

;--
; Some common exit points
;--
ReturnNE

tst.w MinusOne ; set cc NE
rts

ReturnEQ
cmp.w d0,d0 ; set cc EQ
rts

;--
EndWith
EndWith
End

If modifications need to be made to the comparison process, then one or more of the dispatches will be modified to point to
different routines:

dc.w InitProc-HookDispatch ; InitProc = 0
dc.w FetchProc-HookDispatch ; FetchHook = 2
dc.w VernierProc-HookDispatch ; VernierHook = 4
dc.w ProjectProc-HookDispatch ; ProjectHook = 6

There are a number of different changes that can be made to the comparison routines. Some of the common modifications
include:

 1. Comparing two bytes as one character
Yugoslavian “l” < “lj” < “m”; Japanese… [InitProc, FetchProc]

 2. Comparing characters in different order
Norwegian “z” < “å” [ProjectProc]

 3. Comparing one character as two
German “ä” ≈ “ae” [ProjectProc]

 4. Ignoring characters unless strings are otherwise equal:
“blackbird” < “black-bird” < “blackbirds” [ProjectProc]

 5. Changing the secondary ordering
Bibliographic “a” < “A” [VernierProc]

The comparison hook procedures are all assembly language based, with arguments described below. Since the routines may be
called once per character in both strings, the routines should be as fast as possible.

The condition codes are used to return information about the status of the hook routine. Typically the normal processing of
characters will be skipped if the CCR is set to NE, so the default return should always have EQ set. Each of these routines has
access to the stack frame (A6) used in the comparison routine, which has the following form:

IUSortFrame Record {oldA6},Decrement
result ds.w 1
argTop equ *
aStrText ds.l 1
bStrText ds.l 1
aStrLen ds.w 1
bStrLen ds.w 1
argSize equ argTop-*
return ds.l 1
oldA6 ds.l 1
aInfo ds IUStrData
bInfo ds IUStrData
wantMag ds.b 1 ; 1-MagStrig 0-MagIdString.

Developer Technical Support March 1988

Macintosh Technical Notes

weakEq ds.b 1 ; Signals at most weak equality
msLock ds.b 1 ; high byte of master ptr.
weakMag ds.b 1 ; -1 weak, 1 strong compare
supStorage ds.b 18 ; extra storage.
localSize equ * ; frame size.

EndR

There are three fields in this frame that are of interest for altering text comparison. The supStorage field is an area reserved for use by the
comparison hook procedures as they see fit. The aInfo and bInfo records contain information about the current byte positions in the two
compared strings A and B, and information about the status of current characters in those string. The IUStrData record has the following
form:

IUStrData Record 0
curChar ds.w 1 ; current character.
mapChar ds.w 1 ; projected character.
decChar ds.w 1 ; decision char for weak equality
bufChar ds.b 1 ; buffer for expansion.
justAfter ds.b 1 ; boolean for AE vs ligature-AE.
ignChar ds.b 1 ; flag: ignore char.
noFetch ds.b 1 ; flag: no fetch of next.
strCnt ds.w 1 ; length word.
strPtr ds.l 1 ; current ptr to string.

EndR

The Init Procedure

The Init Procedure is used to initialize the comparison process. The main use for this
procedure is for double-byte scripts. As an optimization, the International Utilities will
perform an initial check on the two strings, comparing for simple byte-to-byte equality. Thus
any common initial substrings are checked before the Init procedure is called. The string
pointers and lengths in the IUStrData records have been updated to point just past the
common substrings.

Languages such as Japanese or Yugoslavian, which may consider two bytes to be one
character, may have to back up one byte, as shown below.

;--
; Routine InitProc
; Input A6 Local Frame
; Output CCR NE to skip entire sort (usually set EQ)
; Trashes Standard regs: A0/A1/D0-D2
; Function Initialize any special international hooks.
; Double-byte scripts must synchronize AInfo.StrPtr &
; BInfo.StrPtr here!
;--
; Note: this should also check for single-byte nigori or maru, as below

Developer Technical Support March 1988

Macintosh Technical Notes

InitProc
move.w AStrLen(a6), d0 ; A length
sub.w AInfo.StrCnt(a6),d0 ; see if its changed
beq.s @FixB ; A is done if not
sub.l #2,sp ; return param
move.l AStrText(a6),-(sp) ; textBuf
move.w d0,-(sp) ; textOffset
_CharByte
tst.w (sp)+ ; on character boundary?
ble.s @FixB ; yes, continue
sub.l #1,AInfo.StrPtr(A6) ; adjust pointer
add.w #1,AInfo.StrCnt(A6) ; adjust count

@FixB
move.w BStrLen(a6), d0 ; B length
sub.w BInfo.StrCnt(a6),d0 ; see if its changed
beq.s Quit Init ; B is done if not
sub.l #2,sp ; return param
move.l BStrText(a6), -(sp) ; textBuf
move.w d0, -(sp) ; textOffset
_CharByte
tst.w (sp)+ ; on character boundary?
ble.w @QuitInit ; yes, continue
sub.l #1,BInfo.StrPtr(A6) ; adjust pointer
add.w #1,BInfo.StrCnt(A6) ; adjust count

@QuitInit
bra.s ReturnEQ ; return to the caller.
EndWith

The Fetch Procedure

The Fetch Procedure is used to fetch a character from a string, updating the pointer and
length to reflect the remainder of the string. For example, the following code changes the
text comparison for Yugoslavian:

;--
; Routine FetchProc
; Input A2 String Data Structure
; A3 String pointer (one past fetched char)
; A6 Local Frame
; D4.W Character: top byte is fetched character, bottom
; is zero
; D5.B 1 if string is empty, otherwise 0
; Output D4.W Character: top byte set to character, bottom to
; extension
; D5.B 1 if string is empty, otherwise 0
; Trashes Standard regs: A0/A1/D0-D2
; Function This routine returns the characters that are fetched from
; the string, if they are not just a sequence of single bytes.
;--

FetchProc
tst.b d5 ; more characters in string?
bne.s ReturnEq ; no -> bail out.

move.w d4,d0 ; load high byte.
move.b (a3),d0 ; load low byte.

lea pairTable,a1 ; load table address

@compareChar

Developer Technical Support March 1988

Macintosh Technical Notes

move.w (a1)+,d1 ; pair = 0?
beq.s ReturnEq ; yes -> end of table.
cmp.w d0,d1 ; legal character pair?
bne.s @compareChar ; no -> try the next one.
add.w #1,a3 ; increment pointer.
sub.w #1,StrCnt(a2) ; decrement length.
addx.w d5,d5 ; empty -> set the flag.
move.w d0,d4 ; copy character pair.
rts ; return to caller with CCR=NE

pairTable
dc.b 'Lj' ; Lj
dc.b 'LJ' ; LJ
dc.b 'lJ' ; lJ
dc.b 'lj' ; lj

dc.b 'Nj' ; Nj
dc.b 'NJ' ; NJ
dc.b 'nJ' ; nJ
dc.b 'nj' ; nj

dc.b 'D', $be ; Dz-hat
dc.b 'D', $ae ; DZ-hat
dc.b 'd', $ae ; dZ-hat
dc.b 'd', $be ; dz-hat

DC.B $00, $00 ; table end

The same sort of procedure is used for Japanese or other double-byte scripts, in order to combine two bytes into a single character for
comparison.

FetchProc
with IUStrData
tst.b d5 ; empty string?
bne.s ReturnEq ; exit if length = 0

; if we have a double-byte char, add the second byte
lea CurChar(a2),a0 ; pass pointer
move.w d4,(a0) ; set value at ptr
clr.w d0 ; pass length

sub.l #2,SP ; allocate return
move.l a0,-(sp) ; pointer
move.w d0,-(sp) ; offset
_CharByte
tst.w (sp)+ ; test return
bmi.s @DoubleByte ; skip if high byte (first two)

; we don’t have a double byte, but two special cases combine second bytes
move.b (a3),d0 ; get next byte
cmp.b #$DE,d0 ; nigori?
beq.s @DoubleByte ; add in
cmp.b #$DF,d0 ; maru?
bne.s ReturnEq ; exit: single byte

@DoubleByte
move.b (a3)+,d4 ; get next byte
subq.w #1,StrCnt(A2) ; dec string length
addx.w d5,d5 ; set x=1 if string len = 0
rts ; return to caller with CCR=NE

The Project Procedure

Developer Technical Support March 1988

Macintosh Technical Notes

The Project Procedure is used to find the primary ordering for a character. This routine will
map characters that differ only in the secondary ordering onto a single character, typically
the unmodified, uppercase character. For example, the following changes the comparison
order for some Norwegian characters, so that they occur after ‘Z.’

;--
; Routine ProjectProc
; Input A2 String Data Structure
; D4.W Character (top byte is char, bottom is extension
; (the extension is zero unless set by FetchProc))
; Output D4.W Projected Character
; CCR NE to skip normal Project
; Trashes Standard regs: A0/A1/D0-D2
; Function This routine projects the secondary characters onto primary
; characters.
; Example: a,ä,Ä -> A
;--

ProjectProc
lea ProjTable,A1 ; load table address.

@findChar
move.l (a1)+,D0 ; get entry
cmp.w d0,d4 ; original ≥ entry?
bhi.s @findChar ; no, try the next entry.
bne.s ReturnEq ; not equal, process normally

@replaceChar
swap d0 ; get replacement
move.w d0,d4 ; set new character word.

@doneChar
rts ; CCR is NE to skip project.

ProjTable
; Table contains entries of the form r1, r2, o1, o2,
; where r1,r2 are the replacement word, and
; o1, o2 are the original character.
; The entries are sorted by o1,o2 for use in the above algorithm

DC.B 'Z', 3, 'Å', 0 ; Å after Ø
DC.B 'Z', 3, 'å', 0 ; å after Ø
DC.B 'Z', 1, 'Æ', 0 ; Æ after Z
DC.B 'Z', 2, 'Ø', 0 ; Ø after Æ
DC.B 'Z', 1, 'æ', 0 ; æ after Z
DC.B 'Z', 2, 'ø', 0 ; ø after Æ
DC.L $FFFFFFFF ; table end

The Project procedure can also be used to undo the effects of the normal projection. For example, suppose that “œ” is not to be expanded into
“oe”: in that case, a simple test can be made against 'œ',0, returning NE if there is a match, so that the normal processing is not done. To expand
one character into two, the routine should return the first replacement character in D4.W, and modify two fields in the IUStrData field. For
example, given that A1 points to a table entry of the form (primaryCharacter: Word; secondaryCharacters: Word), the following code could be
used:

…
move.w (a1)+,d4 ; return first, primary character
move.w (a1)+,CurChar(A2) ; original => first, modified char.
addq.b #1,JustAfter(A2) ; set to one (otherwise zero)
move.b (a1),BufChar(A2) ; store second character (BYTE!)
…

Developer Technical Support March 1988

Macintosh Technical Notes

CurChar is where the original character returned by FetchChar is stored. If characters are different even after being projected onto their
respective primary characters, then the CurChar values for each string will be compared. JustAfter indicates that the expanded character
should sort after the corresponding unexpanded form. This field must be set whenever CurChar is modified in order for the comparison to be
fully ordered. BufChar stores the next byte to be retrieved from the string by FetchChar.

To handle the case where characters are ignored unless the two compared strings are otherwise equal, the IgnChar flag can be set. This can be
used to handle characters such as the hyphen in English, or vowels in Arabic.

…
cmp.w #hyphen,d0 ; is it a ignorable?
seq IgnChar(a2) ; set whether or not
…

The Vernier Procedure

The Vernier Procedure is used to make a final comparison among characters that have the
same primary ordering. It is only needed if the CurChar values are not ordered properly.
For example, according to the binary encoding, å < Ã. To change this ordering so that
uppercase letters are before lowercase letters, Ã is mapped to $7F in normal comparison.
Notice that only the characters in the secondary ordering are affected: Ã can be mapped onto
Z, but not onto Ä, since that would cause a collision.

;--
; Routine VernierProc
; Input D4.B High byte of character
; D5.B Low byte of character
; Output D4.B High byte of character
; D5.B Low byte of character
; CCR NE if to skip standard Vernier
; Trashes Standard regs: A0/A1/D0-D2
; Function The Vernier routine compares characters within the secondary
; ordering if two strings are otherwise equal.
; Example: (a,A,Ä,ä)
;--

VernierProc
not.b d4 ; invert secondary ordering
not.b d5 ; ditto for lower byte
bra.s ReturnEq ; normal processing afterwards

Installing an itl2 resource

To write an itl2 resource, follow the guidelines in M.PT.StandAloneCode for writing
standalone code in MPW. The code should be written in assembly language, and it must
follow the specifications given in this technical note or serious system errors could occur
whenever string comparisons are made.

The default comparison routine is in the itl2 resource of the System file. In order to use a
comparison routine other than the standard one, you should include an itl2 resource in
your application with the same name and resource ID as the one in the System file that you
wish to change. The Resource Manager will look for the resource in the application resource
file before

Developer Technical Support March 1988

Macintosh Technical Notes

it looks in the System resource file, so your string comparison routine will be used instead of
the default one.

It is generally a dangerous practice to change a system resource since other applications may
depend on it, but if you have good reasons to permanently change the system itl2 resource
so that all applications use a different comparison routine, then you should write an installer
script to change the itl2 resource in the System resource file. Writing an installer script is
documented in M.TP.Installer. You are required to write an installer script if you are planning
to ship your application on a licensed system software disk and your application makes a
permanent change to any resources in the System file. We strongly discourage changing the
System itl2 as that would change the behavior of string comparison and sorting for all
applications. If that is your intent, then you should write an installer script. However, if you
are changing the itl2 resource in the System file for academic or internal use, then you can
use a resource editor such as ResEdit to copy your itl2 resource into the System file.

Further Reference:
• The International Utilities
• M.TP.Installer
• M.PT.StandAloneCode

Developer Technical Support March 1988

